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The theory of radiation damage in metallic materials predicts that under cascade-irradiation conditions
the voids should approach a steady state, which is characterised by a maximum mean void size. It is
shown in this paper that the steady-state concentrations of voids of different size are described by the
Gaussian distribution with the maximum size mentioned above to be the most probable value. The evo-
lution of voids towards the steady state is analysed.
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1. Introduction

Since the prediction [1] and discovery [2] of swelling in metals
in nuclear reactors, much effort has been made to formulate a the-
ory of the phenomenon. The ‘Production Bias Model’ (PBM) in its
modern form succeeds in explaining several striking observations,
for example, enhanced swelling rates near grain boundaries and in
materials with small grain size and under neutron compared to
electron irradiation [3–6]. The model owns its success to the recog-
nition of two distinguishing features of defect production by high-
energy recoils. First, that clusters of self-interstitial atoms (SIAs)
are formed directly in displacement cascades, the fact revealed
both experimentally [7] and in molecular dynamics (MD) simula-
tions [8,9], and, second, that these clusters execute one-dimen-
sional diffusion [9–13], a phenomenon proposed in [9,14] for the
explanation of the void lattice formation [15,16].

The model predicts that, if a random distribution of voids is
maintained, a steady state should establish at high irradiation
doses, which is characterised by a maximum void size, rm, above
which the net vacancy flux to voids is negative. This is because
the cross-section of the interaction of three-dimensionally (3-D)
diffusing vacancies with voids is proportional to the void radius
r, while that of the 1-D migrating SIA clusters to r2. As a result,
above some critical radius, the latter becomes higher than the for-
mer. It has been shown that rm � 2prd/Zv, where rd is the disloca-
tion capture radius for the SIA clusters and Zv is the capture
efficiency of dislocations for vacancies [3]. Note that this
009 Published by Elsevier B.V. All
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expression does not include the dependence on the dislocation bias
for point defects: B = Zi/Zv � 1, where Zi is the capture efficiency of
dislocations for single SIAs, which accounts for one of the main
driving forces for the void growth [1].

In this paper we derive the dependence of the critical void ra-
dius on the dislocation bias factor and an equation for the stea-
dy-state size distribution function (SDF) of voids and analyse
how voids approach the steady state.
2. Steady-state size distribution function

Let us assume that the primary damage produced in cascades
consists of 3-D mobile single vacancies and SIAs and 1-D mobile
SIA clusters. In addition, let us assume that the void nucleation
stage is over and the mobile defects interact only with existing
voids of the number density N and dislocations of the density q.
Then, according to the PBM (see, e.g. [6]), the rate of swelling is
equal to the difference in arrival rates of vacancies, jv, single SIAs,
ji, and SIAs in clusters, jcl, to voids

dS
d/
¼ jv � ji � jcl

¼ 4prN
4prN þ Zvq

� ð1� eg
i Þ

4prN
4prN þ Ziq

� eg
i

pr2N
pr2N þ pqrd=2

ð1Þ

where S = 4pr3N/3, r is the mean radius of voids, eg
i is the fraction of

the SIAs produced in the clustered form and u is the irradiation
dose. The irradiation dose is in displacements per atom (dpa) and
accounts for the fraction of defects that survived intra-cascade
recombination, eS; hence it corresponds to the dpa calculated using
the NRT standard procedure [17] and multiplied by eS.
rights reserved.
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Fig. 1. The SDF of voids calculated for B = 0.04, a = 1 and eg
i ¼ 0:25; 0:5 and 1. x1

m

=104 is the most probable void size for eg
i =1. The SDFs are normalised by the

maximum value, f 1
max, calculated for eg =1, assuming C0 to be the same.
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Eq. (1) cannot be used below some temperature, when the va-
cancy or SIA diffusivity is so low that recombination reactions be-
tween mobile species are important. At higher temperature, the
defect mobilities do not enter the analysis and the swelling is
determined by partitioning of defects between sinks, as in Eq.
(1). Since the recombination between cascade-produced mobile
vacancies and SIAs in clusters have not been studied so far, any
estimates are not available. Another limitation is due to neglecting
vacancy emission from voids, which requires high vacancy super-
saturation and thus restricts the analysis to temperatures below
�(0.5–0.6) Tm, where Tm is the melting temperature, depending
on the dose rate. Also, it is assumed that the void nucleation stage
is separated from the growth stage due to reduced thermal stabil-
ity of void nuclei. The validity of this assumption and the nucle-
ation itself is in fact one of the fundamental unresolved
problems, which is closely connected with the validity of conven-
tional assumption of homogeneous spatial distribution of defects
in the system and is analysed in [18,19].

It can readily be obtained from Eq. (1) that the maximum mean
void radius, which corresponds to zero swelling rate, is

rm �
2prd

Zv
1þ 1� eg

i

eg
i

B
� �

ð2Þ

where we omitted higher order terms in B. (For a comprehensive
analysis see [18].) According to Eq. (2), rm increases with decreasing
eg

i , so that there is no saturation of swelling in the limit of eg
i ¼ 0, i.e.

for electron irradiation, as expected. It worth mentioning that a
more rigorous treatment predicts an unlimited swelling even at fi-
nite eg

i somewhat smaller than B [18].
In order to derive the steady-state SDF of voids, f(x) = f(x, / =1),

where the number of vacancies in a void of radius rx is
x ¼ 4pr3

x=3X, X is the atomic volume, we consider the Smoluchow-
ski (continuity) equation for the diffusion of voids in the size space

lim
/!1

@f ðx;/Þ
@/

¼ d
dx
�VðxÞf ðxÞ þ d

dx
DðxÞf ðxÞ½ �

� �
¼ 0: ð3Þ

Here V(x) = jvx � jix � jclx is the velocity and D(x) = (jvx + jix + jclx)/2 is
the diffusion coefficient, where jkx = jkrx/rN (k ¼ v; i) and
jclx ¼ jclr

2
x=r2N. Eq. (3) represents the familiar master equation for

the evolution of the SDF of voids via absorption and emission of dif-
ferent defects in the diffusion limit of large void size (see, e.g.
[20,21]). Its solution that provides zero flux of voids (the term in
curly brackets) is

f ðxÞ ¼ A exp
Z

dxVðxÞ=DðxÞ
� �

=DðxÞ ð4Þ

where A is a normalising constant. We expect that, in most cases,
the SDF will be a narrow function around xm ¼ 4pr3

m=3X, such that
|x/xm � 1| < < 1. With this condition, it is readily obtained that, to a
first approximation, D(x) is a constant and

VðxÞ
DðxÞ � keg

i 1� rx
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3
1� x

xm

� �
ð5Þ

where

k ¼ 1þ 1� eg
i

eg
i

B
1þ a

ð6Þ

a = 4prmN/Zvq and only the first order term in B is retained. By
substituting Eq. (5) into Eq. (4), one obtains the SDF as Gaussian dis-
tribution centred on the most probable size, xm,

f ðxÞ � C0

ffiffiffiffiffiffiffiffiffiffiffiffi
keg

i

6pxm

s
exp �ðx� xmÞ2

6xm=keg
i

" #
ð7Þ
where C0 �
R

dxf(x) is the total void concentration. The SDF has a
half-width at half-maximum of r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xm6 ln 2=keg

i

q
and is thus nar-

row: r < < xm for reasonable values of eg
i (�0.5 according to MD

studies of displacement cascades in Fe and Cu for the primary
knock-on atom energy EPKA � 10 keV [22]). We note that the exper-
imentally observed spreads of void sizes are obviously much bigger
and reasons for this are discussed below.

Fig. 1 shows the SDF calculated using Eq. (7) for B = 0.04, a = 1,
eg

i =0.25, 0.5 and 1 (open symbols and connecting lines). In this fig-
ure, x1

m � 104 corresponds to r1
m � p nm and is the most probable

void size for eg
i ¼ 1. As can be seen, with decreasing eg

i , the SDF be-
comes wider and shifts towards bigger void size due to increase of
xm according to Eq. (2). Additional data shown on the same graph
by full symbols are the result of a full-scale calculations of the tem-
poral evolution of SDF, performed using a computer code described
in Ref. [4,21], and compare perfectly well with the analytical
results.

We note that the case of electron irradiation is obtained in the
limit eg

i ! 0. Eqs. (2) and (7) are not supposed to be valid in this
case, but, show qualitatively correct behaviour, namely, that there
is no saturation of swelling.

The analysis presented is limited to random distribution of
voids and any correlation in void positions, e.g. due to formation
of ordered structures [15,16], would unavoidably change the kinet-
ics [23]. The most significant result is the contradiction of a very
narrow width of the theoretical SDF with much bigger spreads of
the void sizes observed. This discrepancy seems important for
uncovering fundamental mechanisms of damage accumulation,
and is discussed further below.

3. Approach of the steady state

To analyse how the steady state is established, we simplify Eq.
(1) by taking Zi = Zv

dS
d/
¼ eg

i arrmðrm � rÞ
ðrm þ arÞðr2

m þ ar2Þ ð8Þ

In the limiting case, when r < < rm and voids are dominant sinks,
the dose dependence of the mean void radius from its initial value
r0, formed during nucleation stage not considered here, is readily
obtained
i



Fig. 2. The dependence of the mean void radius on the irradiation dose, /,
calculated for different values of eg

i and a.
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r ¼ r5
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; a
r

rm

� �2

>> 1 ð9Þ

which is similar to that obtained in [4,24].
Eq. (8) predicts a big difference in doses required to reach the

equilibrium at low and high void density. This effect is demon-
strated by full-scale calculations performed using a computer code
described in [4,21]. The results are shown in Fig. 2. The value of eS is
assumed to be equal to 0.1 (i.e. �half of that given by MD simula-
tion of cascades for EPKA > 5 keV [22]; the factor of 1/2 is an as-
sumed fraction of defects that recombine during the cascade
annealing). The value of p corresponds to the void saturation ra-
dius at either eg

i or B =0. As can be seen, when the void size is small
enough, the curve calculated for a = 100 is described satisfactorily
by Eq. (9). Also, the dose required for reaching the steady state in
this case is higher compared to that for a = 0.01 by more than three
orders of magnitude (a precise value is unknown since the calcula-
tions for a = 100 were terminated at 100 dpa). There are two
important consequences of this effect.

First, the steady state of void population distributed randomly is
likely to be unrelated to the void lattices formation and possible
saturation of swelling in void lattices. Indeed, the formation of void
lattices in metals and alloys under cascade irradiation is observed
at high void densities and in the dose range from several to several
tens of dpa [16]. As can be seen from Fig. 2, at a high void density,
a = 100 (for eg

i ¼ 0:5), the irradiation dose required to reach the
steady state is much higher than 100 dpa, hence much higher than
in experiments. In addition, it has been shown previously [23] that
the formation of free channels between voids in void lattices pro-
vides escape roots for the SIA clusters to dislocations and leads
to a significant increase of the void saturation radius.

Second, it is usually observed that, at relatively low void densi-
ties, when a 6 1, voids start to grow after some incubation period
and the growth is unlimited [25]. Our calculations presented on
Fig. 2 show that the dose required to reach the steady state in these
conditions is small, in the range from 10�2 to 10 dpa depending on
eg

i and a. It is tempting to think that the incubation period of swell-
ing could be because the voids reached their critical radius. It is
worth mentioning that, despite many successes of the PBM in
explaining features of microstructure evolution of metallic materi-
als under neutron irradiation at low irradiation doses (<1 dpa), an
unlimited void growth observed at higher doses after the incuba-
tion period of swelling cannot be explained in the framework of
the model as formulated. Possible ways of resolving this contradic-
tion are subject of a separate paper [18].

4. Conclusions

The steady state of the void population under cascade-irradia-
tion conditions predicted by the theory has been analysed. The fol-
lowing conclusions have been drawn.

(1) The theoretical steady state SDF of voids is described by a
Gaussian distribution, which is quite narrow, in contrast to
much bigger spread of void sizes observed.

(2) At high void density, when a >> 1, the irradiation dose
required to reach the steady state is higher than those at
which void lattices are observed. Hence, the void size satura-
tion of randomly distributed voids and in the lattice are not
related to each other.

(3) At low void density, when a 6 1, the irradiation dose
required to reach the steady state is relatively small and this
might be a reason for the incubation period of swelling
observed frequently.
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